Showing posts with label Leaf. Show all posts
Showing posts with label Leaf. Show all posts

Parts of Typical Leaf

Parts of Typical Leaf
The typical green leaf is called a foliage leaf. It usually consists of two basic parts: a petiole and a blade.

The petiole is a stalklike structure that supports the leaf blade on the stem. It also serves as a passageway between the stem and the blade for water and nutrients. Another function of the petiole is to move the leaf into the best position for receiving sunlight. Most petioles are long, narrow, and cylindrical.

Many plants, such as grasses and corn, do not have petioles. In these plants the base of the blade is attached directly to the stem—the base encircles the stem as a sheath. Such leaves are called sessile leaves.

The leaf blade is usually a thin, flat structure. Its margins, or edges, may be smooth, as in the dogwood; jagged or toothed, as in the elm; or lobed, as in the oak and maple. The surface of the blade may be smooth, fuzzy, sticky, dull, or shiny. In most plants the leaves have a single blade and are referred to as simple. In other plants, such as clover, the blade is divided into separate leaflets. This kind of leaf is called a compound leaf. Most of the functions carried on by leaves take place in the blade.

A Epidermis

The blade consists of an upper and lower epidermis and a spongy layer of tissue, called the mesophyll. Running through the mesophyll is a branching system of veins.

The epidermis is the leaf blade's skin. It is a thin, usually transparent, colorless layer of cells that covers both the upper and lower surfaces of the blade. The epidermis prevents the leaf from losing excessive amounts of water and protects it against injury.

In most plants the epidermis is covered with cutin, a waxy substance secreted by the epidermal cells. The layer of cutin, called the cuticle, is responsible for the glossy appearance of some leaves. The cuticle gives the leaf additional protection by slowing down the rate at which water is lost. Generally, the cuticle is thinner on the epidermis on the underside of the leaf than on the upper epidermis, which is exposed to the sun.

In many kinds of leaves, hairs grow from the epidermis. The soft hairs of plants such as the mullein give the leaves a woolly or feltlike texture. In some plants the epidermal hairs secrete fluids. For example, in geraniums and petunias the hairs secrete a fluid that gives the leaves a clammy texture. The strong-smelling oils of the peppermint and spearmint plants come from epidermal hairs. In other plants, such as the nettle, the epidermal hairs are stiff and contain a poisonous fluid that produces a skin irritation when a person is pricked by them.

B Guard Cells

Scattered throughout the epidermis are pairs of bean-shaped cells, called guard cells. Guard cells contain chloroplasts, which are tiny granules filled with the green pigment chlorophyll. Chlorophyll gives leaves their characteristic green color. Chloroplasts enable leaves to carry on photosynthesis because they are able to absorb carbon dioxide and sunlight, which are required for the food-making process. In response to heat and light, each pair of guard cells pulls apart, and a tiny pore forms between them. The pores, called stomata, open to the outside atmosphere. See leaf mechanism.

C Water Pores

In addition to the stomata, many kinds of leaves have large specialized water pores in their epidermis. These pores, called hydathodes, permit guttation, the process by which a plant loses liquid water. Unlike the stomata, hydathodes remain open all the time.

Guttation takes place only when water is being rapidly absorbed by the roots, such as after a heavy rainfall, and when transpiration slows down, as on cool, humid nights. When these conditions occur together, droplets of water can be seen on the leaf early in the morning before they evaporate in the heat of the day. Unlike dew, which condenses on leaves from water vapor in the air and covers the entire leaf surface, guttation droplets form only on the edges and tips of leaves. Generally, the droplets are noticeable only on the leaves of strawberries and a few other kinds of plants.

D Mesophyll

The mesophyll, sandwiched between the upper and lower epidermis, consists of many thin-walled cells that are usually arranged in two layers. The palisade layer is next to the upper epidermis. It consists of cylindrical cells that are packed closely together. Next to the palisade layer and making up most of the thickness of the leaf blade is the spongy layer. The spongy layer consists of roundish cells that are packed loosely together and have numerous air spaces between them. In most plants the spongy layer extends down to the lower epidermis. However, in certain grasses, irises, and other plants whose leaves grow straight up and down, the spongy layer is wedged between two palisade layers of mesophyll. Like the guard cells, all the cells of the mesophyll contain chloroplasts.

E Veins

Running through the middle of the mesophyll and branching out to all of its cells are veins. The veins extend into the petiole and connect with other veins in the stem of the plant. A major function of the veins is to help support the leaf blade. Each type of plant has a characteristic pattern of veins forming lines and ridges in the blade.

The veins of a leaf are made up of two specialized tissues, xylem and phloem. Xylem usually forms the upper half of the vein. It consists of tubular open-ended cells that are arranged end to end. The walls of the cells are thick and rigid. Xylem conducts water and dissolved minerals to the leaf blade from the rest of the plant.

Phloem lies on the underside of the vein. It is made up of thin-walled tubular cells with tiny openings at their ends, somewhat like a sieve. These cells are also arranged end to end. Phloem carries food manufactured in the blade to the rest of the plant.

related topics:

Leaf

Leaf
Leaf, part of a plant that serves primarily as the plant's food-making organ in a process called photosynthesis. Leaves take part in other plant functions as well, including transpiration and guttation, both of which remove excess water from the plant, and respiration, the process by which a plant obtains oxygen and energy. Leaves also may store food and water and provide structural support.

A leaf is an extension of a plant's stem. Although most leaves are flat, broad, or bladelike, they also may be many other shapes, including round, oval, or feathery. In general, the leaves of trees such as hardwoods tend to be broad and relatively large, and the leaves of conifers, or cone-bearing trees, are usually small and needlelike in shape. In size, leaves range from only several millimeters (a fraction of an inch) long, as in the water plant Elodea, to 15 to 18 m (15 to 60 ft) long, as in some palm trees.

Green leaves derive their color from a green pigment called chlorophyll. The presence of additional pigments causes other leaf colors such as red in coleus and purple in cabbage. In temperate regions of the world, the leaves of some plants change color in autumn. Leaves of most garden plants turn yellow in the autumn, but those of many trees take on brilliant orange or red colors.

See Parts of Typical Leaf; Importance of Leaf.

Major Parts of a Tree

The major parts of a tree
The major parts of a tree are its roots, trunk, leaves, flowers, and seeds. These components play vital roles in a tree’s growth, development, and reproduction.

A. Roots

Trees are held in place by anchoring organs called roots. In addition to anchoring the tree, roots also absorb water and minerals through tiny structures called root hairs. From the roots the water and mineral nutrients are carried upward through the wood cells to the leaves. Although the internal structure of most kinds of roots is similar, there are often external differences. Pines, for example, have a strongly developed taproot, or main root, in addition to branching side roots. In maples, on the other hand, there is little or no central taproot, and the other roots are produced in great numbers near the surface of the soil.

Roots grow constantly, and at the growing tip of each root is a region called the meristem, which is composed of special rapidly dividing cells. Just behind the meristem the cells become elongated, and farther from the tip the cells become differentiated into various kinds of plant tissue. In rapidly growing roots the root tip is covered by a root cap, a protective coat of loose cells that are constantly being rubbed off and replaced as the root grows.

B. Trunk

Bark is the outer protective covering of tree trunks. Because bark varies so widely in color, texture, and thickness, its characteristics provide one of the most important means of identifying species of trees. Most of the total thickness of bark consists of outer bark, which is made up of dead cells. Outer bark may be very thick, as in the cork oak, or quite thin, as in young birches and maples. Openings in the outer bark allow the movement of carbon dioxide and oxygen to and from the inner tissues.

The inner bark layer, called the phloem, consists of a thin layer of living cells. These cells act together to transport food in the form of sugars, which are made in the tree’s leaves, through the trunk and stems to other parts of the tree. Phloem cells have thin walls, and their living contents are so interconnected that the sugar solutions can pass easily and rapidly from one end of the plant to the other. As old layers of outer bark are sloughed off, new ones are constantly being added from the inside, where new phloem is always being created.

Most of a tree trunk is occupied by the wood, or xylem layer, which consists almost entirely of dead cells. The living xylem cells, however, act as the tree’s plumbing system by transporting water and dissolved food through the trunk and stems. A layer of cells called the cambium separates the living xylem cells from the phloem. As the tree grows and develops, the cambium forms new phloem and xylem cells. The layers of xylem cells form rings; these rings can be counted to determine the age of the tree in areas with distinct growing seasons.

C. Leaves

In trees, as in other green plants, the principal function of the leaves is the manufacture of sugars by the process of photosynthesis. In this process, sugars are formed when carbon dioxide (from the air) and water (from the leaf cells) are combined in the presence of light and the green pigment chlorophyll. Oxygen is produced as a byproduct. Some of the newly formed sugar is used by the leaf cells for energy, but most is carried to other parts of the tree to provide energy for growth and development in those areas.

The leaves are also the chief organs involved in the loss of water from the plant, called transpiration. Many of the tree’s tissues cannot function without a constant supply of water, and water is necessary to prevent overheating or wilting of the leaves. Transpiration is responsible for the movement of water from the roots of the tree up to the top. As water is lost through the leaves, water that enters the roots is pulled upward through the xylem tissue to replace the lost moisture, ensuring a constant circulation of water through the tissues of the tree.

D. Flowers

All angiosperms bear flowers, the trees’ reproductive structures. In some trees, such as dogwoods, cherries, and some magnolias, the flowers are large and colorful. Oaks, willows, and other temperate forest trees, on the other hand, often bear small, pale, and inconspicuous flowers.

In maples and many other trees the male and female reproductive parts are carried in separate flowers on the same tree. This arrangement is known as monoecism, and such trees are called monoecious. In oaks, for example, the male pollen-producing flowers are borne in long hanging tassels, and the short-stalked or stalkless female flowers are located on the twigs. In some trees, such as the hollies and willows, the male and female flowers are borne on separate trees. This is known as dioecism, and these trees are called dioecious.

E. Seeds

Seeds, the ripened ovules of the plant that are capable of germination, are the product of fertilized flowers and are distributed in various ways. In pines, for example, each seed is surrounded by a winglike structure. As the winged seed falls from the cone, it floats down to the ground, riding air currents. Oak seeds are enclosed in acorns, which are either planted by squirrels or merely fall to the ground near the parent tree. Willow trees produce thin-walled, flask-shaped fruits that burst open, releasing the seeds. Each seed has a tuft of downy fibers, which enables it to be picked up by air currents and travel for considerable distances. Seeds of other tree species are dispersed by water, mammals, birds, and ants.

related articles:

Plant Organs

The body of a vascular plant is organized into three general kinds of organs: roots, stems, and leaves. These organs all contain the three kinds of tissue systems mentioned above, but they differ in the way the cells are specialized to carry out different functions.

Roots
The function of roots is to anchor the plant to its substrate and to absorb water and minerals. Thus, roots are generally found underground and grow downward, or in the direction of gravity. Unlike stems, they have no leaves or nodes. The epidermis is just behind the growing tip of roots and is covered with root hairs, which are outgrowths of the epidermal cells. The root hairs increase the surface area of the roots and serve as the surface through which water and nutrients are absorbed.

Internally, roots consist largely of xylem and phloem, although many are highly modified to carry out specialized functions. Thus, some roots are important food and storage organs—for example, beets, carrots, and radishes. Such roots have an abundance of parenchyma tissue. Many tropical trees have aerial prop roots that serve to hold the stem in an upright position. Epiphytes have roots modified for quick absorption of rainwater that flows over the bark of the host plants.

Roots increase in length through the activity of apical meristems and in diameter through the activity of lateral meristems. Branch roots originate internally at some distance behind the growing tip, when certain cells become meristematic.

Stems
Stems usually are above ground, grow upward, and bear leaves, which are attached in a regular pattern at nodes along the stem. The portions of the stem between nodes are called internodes. Stems increase in length through the activity of an apical meristem at the stem tip. This growing point also gives rise to new leaves, which surround and protect the stem tip, or apical bud, before they expand. Apical buds of deciduous trees, which lose their leaves during part of the year, are usually protected by modified leaves called bud scales.

Stems are more variable in external appearance and internal structure than are roots, but they also consist of the three tissue systems and have several features in common. Vascular tissue is present in bundles that run the length of the stem, forming a continuous network with the vascular tissue in the leaves and the roots. The vascular tissue of herbaceous plants is surrounded by parenchyma tissue, whereas the stems of woody plants consist mostly of hard xylem tissue. Stems increase in diameter through the activity of lateral meristems, which produce the bark and wood in woody plants. The bark, which also contains the phloem, serves as a protective outer covering, preventing damage and water loss.

Within the plant kingdom are many modifications of the basic stem, such as the thorns of hawthorns. Climbing stems, such as the tendrils of grapes and Boston ivy, have special modifications that allow them to grow up and attach to their substrate. Many plants, such as cacti, have reduced leaves or no leaves at all, and their stems act as the photosynthetic surface. Some stems, including those of many grasses, creep along the surface of the ground and create new plants through a process called vegetative reproduction. Other stems are borne underground and serve as food-storage organs, often allowing the plant to survive through the winter; the so-called bulbs of the tulip and the crocus are examples.

LeavesThe leaf is the primary photosynthetic organ of most plants. Leaves are usually flattened blades that consist, internally, mostly of parenchyma tissue called the mesophyll, which is made up of loosely arranged cells with spaces between them. The spaces are filled with air, from which the cells absorb carbon dioxide and into which they expel oxygen. The mesophyll is bounded by the upper and lower surface of the leaf blade, which is covered by epidermal tissue. A vascular network runs through the mesophyll, providing the cell walls with water and removing the food products of photosynthesis to other parts of the plants.

The leaf blade is connected to the stem through a narrowed portion called the petiole, or stalk, which consists mostly of vascular tissue. Appendages called stipules are often present at the base of the petiole.

Many specialized forms of leaves occur. Some are modified as spines, which help protect plants from predators. Insectivorous plants possess highly modified leaves that trap and digest insects to obtain needed nutrients. Some leaves are brightly colored and petal-like, serving to attract pollinators to otherwise small, unattractive flowers. Perhaps the most highly modified leaves are flowers themselves. The individual parts of flowers—carpels, stamens, petals, and sepals—are all modified leaves that have taken on reproductive functions.

Popular Posts